Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В три сосуда налито по целому числу литров воды. В любой сосуд разрешено перелить столько воды, сколько в нём уже содержится, из любого другого сосуда. Докажите, что несколькими такими переливаниями можно освободить один из сосудов. (Сосуды достаточно велики: каждый может вместить всю воду.)

Вниз   Решение


В параллелограмме $ABCD$ угол $A$ острый. На стороне $AB$ отмечена такая точка $N$, что  $CN = AB$.  Оказалось, что описанная окружность треугольника $CBN$ касается прямой $AD$. Докажите, что она касается её в точке $D$.

ВверхВниз   Решение


Автор: Фомин С.В.

Можно ли нарисовать на поверхности кубика Рубика такой замкнутый путь, который проходит через каждый квадратик ровно один раз (через вершины квадратиков путь не проходит)?

ВверхВниз   Решение


Диагонали параллелограмма ABCD пересекаются в точке O. Касательная, проведённая к описанной окружности треугольника BOC в точке O, пересекает луч CB в точке F. Описанная окружность треугольника FOD повторно пересекает прямую BC в точке G. Докажите, что  AG = AB.

ВверхВниз   Решение


Автор: Дидин М.

На аттракционе «Весёлая парковка» у машинки только 2 положения руля: «вправо» и «совсем вправо». В зависимости от положения руля, машинка едет по дуге радиуса $r_1$ или $r_2$. Машинка выехала из точки $A$ на север и проехала расстояние $l$, повернув при этом на угол $\alpha<2\pi$. Где она могла оказаться (найдите ГМТ – концов возможных траекторий)?

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 58]      



Задача 60424  (#02.090)

 [Треугольник Лейбница]
Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Индукция (прочее) ]
Сложность: 3
Классы: 9,10

Здесь изображен фрагмент таблицы, которая называется треугольником Лейбница. Его свойства "аналогичны в смысле противоположности" свойствам треугольника Паскаля. Числа на границе треугольника обратны последовательным натуральным числам. Каждое число внутри равно сумме двух чисел, стоящих под ним. Найдите формулу, которая связывает числа из треугольников Паскаля и Лейбница.

Прислать комментарий     Решение

Задача 60425  (#02.091)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Последовательности (прочее) ]
Сложность: 4-
Классы: 9,10,11

Докажите равенства (см. треугольник Лейбница, задача 60424):

  а) 1 = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + ... ;

  б) 1/2 = 1/3 + 1/12 + 1/30 + 1/60 + 1/105 + ... ;

  в) 1/3 = 1/4 + 1/20 + 1/60 + 1/140 + 1/280 + ... .

Прислать комментарий     Решение

Задача 60426  (#02.092)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Последовательности (прочее) ]
Сложность: 4-
Классы: 10,11

Найдите сумму (см. задачу 60424 про треугольник Лейбница):
  1/12 + 1/30 + 1/60 + 1/105 + ...
и обобщите полученный результат.

Прислать комментарий     Решение

Задача 60427  (#02.093)

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Ряды (прочее) ]
Сложность: 4-
Классы: 10,11

Найдите суммы рядов

  а)  

  б)  

  в)    (r ≥ 2).

Прислать комментарий     Решение

Задача 60428  (#02.094)

Темы:   [ Дискретное распределение ]
[ Классическая комбинаторика (прочее) ]
[ Условная вероятность ]
Сложность: 2
Классы: 8,9,10

В ящике имеется 10 белых и 15 чёрных шаров. Из ящика вынимаются четыре шара. Какова вероятность того, что все вынутые шары будут белыми?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 58]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .