ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 185]      



Задача 37006

Темы:   [ Тетраэдр (прочее) ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема о трех перпендикулярах ]
[ Вспомогательные равные треугольники ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4-
Классы: 10,11

В тетраэдре DABC  ∠ACB = ∠ADB,  ребро СD перпендикулярно плоскости АВС. В треугольнике АВС дана высота h, проведённая к стороне АВ, и расстояние d от центра описанной окружности до этой стороны. Найдите CD.

Прислать комментарий     Решение

Задача 64334

Темы:   [ Углы между биссектрисами ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 8,9

Биссектрисы AA1 и CC1 прямоугольного треугольника ABC  (∠B = 90°)  пересекаются в точке I. Прямая, проходящая через точку C1 и перпендикулярная прямой AA1, пересекает прямую, проходящую через A1 и перпендикулярную CC1, в точке K. Докажите, что середина отрезка KI лежит на отрезке AC.

Прислать комментарий     Решение

Задача 64335

Темы:   [ Вписанные и описанные окружности ]
[ Углы между биссектрисами ]
Сложность: 4-
Классы: 8,9

Дан треугольник ABC. На продолжениях сторон AB и CB за точку B взяты соответственно точки C1 и A1 так, что  AC = A1C = AC1.
Докажите, что описанные окружности треугольников ABA1 и CBC1 пересекаются на биссектрисе угла B.

Прислать комментарий     Решение

Задача 64340

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Площадь и ортогональная проекция ]
[ Площадь. Одна фигура лежит внутри другой ]
Сложность: 4-
Классы: 10,11

Существует ли многогранник, у которого отношение площадей любых двух граней не меньше 2?

Прислать комментарий     Решение

Задача 64341

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Подобные треугольники (прочее) ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 10,11

На сторонах четырёхугольника ABCD с перпендикулярными диагоналями во внешнюю сторону построены подобные треугольники ABM, CBP, CDL и ADK (соседние ориентированы по-разному). Докажите, что  PK = ML.

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 185]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .