ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 185]      



Задача 64752

Темы:   [ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4-

В треугольнике ABC серединные перпендикуляры к сторонам AB и BC пересекают сторону AC в точках P и Q соответственно, причём точка P лежит на отрезке AQ. Докажите, что описанные окружности треугольников PBC и QBA пересекаются на биссектрисе угла PBQ.

Прислать комментарий     Решение

Задача 64753

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Средняя линия треугольника ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4-

Отрезок AD – диаметр описанной окружности остроугольного треугольника ABC. Через точку H пересечения высот этого треугольника провели прямую, параллельную стороне BC, которая пересекает стороны AB и AC в точках E и F соответственно.
Докажите, что периметр треугольника DEF в два раза больше стороны BC.

Прислать комментарий     Решение

Задача 64756

Темы:   [ Правильная призма ]
[ Примеры и контрпримеры. Конструкции ]
[ Движение помогает решить задачу ]
Сложность: 4-

Можно ли правильную треугольную призму разрезать на две равные пирамиды?

Прислать комментарий     Решение

Задача 64757

Темы:   [ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Углы между биссектрисами ]
Сложность: 4-

Биссектрисы AA1 и CC1 треугольника ABC пересекаются в точке I. Описанные окружности треугольников AIC1 и CIA1 повторно пересекают дуги AC и BC (не содержащие точек B и A соответственно) описанной окружности треугольника ABC в точках C2 и A2 соответственно. Докажите, что прямые A1A2 и C1C2 пересекаются на описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 65227

Темы:   [ Трапеции (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4-
Классы: 8,9,10

В трапеции ABCD биссектрисы углов A и D пересекаются в точке E, лежащей на боковой стороне BC. Эти биссектрисы разбивают трапецию на три треугольника, в которые вписали окружности. Одна из этих окружностей касается основания AB в точке K, а две другие касаются биссектрисы DE в точках M и N. Докажите, что  BK = MN.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 185]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .