ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выпуски:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



Задача 79290  (#М285)

Темы:   [ Замощения костями домино и плитками ]
[ Вспомогательная раскраска ]
[ Процессы и операции ]
[ Индукция (прочее) ]
Сложность: 6+
Классы: 9,10,11

Прямоугольный лист бумаги размером a×b см разрезан на прямоугольные полоски, каждая из которых имеет сторону 1 см. Линии разрезов параллельны сторонам исходного листа. Доказать, что хотя бы одно из чисел a или b целое.
Прислать комментарий     Решение


Задача 79282  (#М286)

Темы:   [ Системы точек ]
[ Касающиеся окружности ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 4-
Классы: 7,8,9

На плоскости расположено N точек. Отметим середины всевозможных отрезков с концами в этих точках. Какое наименьшее число отмеченных точек может получиться?
Прислать комментарий     Решение


Задача 79286  (#М287)

Темы:   [ Последовательности (прочее) ]
[ Принцип крайнего (прочее) ]
[ Процессы и операции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 8,9,10

Автор: Лифшиц А.

Существует ли такая последовательность натуральных чисел, чтобы любое натуральное число 1, 2, 3, ... можно было представить единственным способом в виде разности двух чисел этой последовательности?
Прислать комментарий     Решение


Задача 79293  (#М288)

Темы:   [ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Степень вершины ]
Сложность: 3+
Классы: 7,8,9

На конгресс собрались учёные, среди которых есть друзья. Оказалось, что каждые два из них, имеющие на конгрессе равное число друзей, не имеют общих друзей. Доказать, что найдётся учёный, который имеет ровно одного друга из числа участников конгресса.

Прислать комментарий     Решение

Задача 79288  (#М289)

Темы:   [ Взвешивания ]
[ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
[ Процессы и операции ]
Сложность: 4+
Классы: 8,9,10

Имеется несколько гирь, масса каждой из которых равна целому числу. Известно, что их можно разбить на k равных по массе групп.
Доказать, что не менее чем k способами можно убрать одну гирю так, чтобы оставшиеся гири нельзя было разбить на k равных по массе групп.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .