ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 108251  (#М1421)

Темы:   [ Неравенство треугольника (прочее) ]
[ Медиана, проведенная к гипотенузе ]
[ Перенос помогает решить задачу ]
[ Четырехугольник (неравенства) ]
Сложность: 3+
Классы: 8,9

В выпуклый четырёхугольник ABCD, у которого углы при вершинах B и D – прямые, вписан четырёхугольник с периметром P (его вершины лежат по одной на сторонах четырёхугольника ABCD).
  а) Докажите неравенство  P ≥ 2BD.
  б) В каких случаях это неравенство превращается в равенство?

Прислать комментарий     Решение

Задача 98188  (#М1423)

Темы:   [ Турниры и турнирные таблицы ]
[ Примеры и контрпримеры. Конструкции ]
[ Отношение порядка ]
Сложность: 3+
Классы: 6,7,8

Автор: Рубин А.

Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)?

Прислать комментарий     Решение

Задача 98189  (#М1424)

Темы:   [ Последовательности (прочее) ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3+
Классы: 6,7,8

В строчку выписано 10 целых чисел. Вторая строчка находится так: под каждым числом A первой строчки пишется число, равное количеству чисел первой строчки, которые больше A и при этом стоят правее A. По второй строчке аналогично строится третья строчка и т. д.
  а) Докажите, что все строчки, начиная с некоторой – нулевые (состоят из сплошных нулей).
  б) Каково максимально возможное число ненулевых строчек (содержащих хотя бы одно число, отличное от нуля)?

Прислать комментарий     Решение

Задача 108596  (#М1425)

Темы:   [ Вспомогательные равные треугольники ]
[ Параллелограмм Вариньона ]
[ Поворот помогает решить задачу ]
[ Ортоцентр и ортотреугольник ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3+
Классы: 8,9

Дан невыпуклый несамопересекающийся четырёхугольник, который имеет три внутренних угла по 45°.
Докажите, что середины его сторон лежат в вершинах квадрата.

Прислать комментарий     Решение

Задача 98193  (#М1426)

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 7,8,9

Через S(n) обозначим сумму цифр числа n (в десятичной записи).
Существуют ли три таких различных натуральных числа m, n и p, что   m + S(m) = n+S(n) = p + S(p)?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .