Версия для печати
Убрать все задачи
Стороны произвольного выпуклого многоугольника покрашены снаружи. Проводится
несколько диагоналей многоугольника, так, что никакие три не пересекаются в
одной точке. Каждая из этих диагоналей тоже покрашена с одной стороны, т.е. с
одной стороны отрезка проведена узкая цветная полоска. Доказать, что хотя бы
один из многоугольников, на которые разбит диагоналями исходный многоугольник,
весь покрашен снаружи.

Решение
ABCDE — правильный пятиугольник.
Tочка B' симметрична точке B относительно прямой AC (см. рисунок). Mожно
ли пятиугольниками, равными AB'CDE, замостить плоскость?

Решение