ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Все коэффициенты квадратного трёхчлена – нечётные целые числа. Докажите, что у него нет корней вида 1/n, где n – натуральное число.
Какое наибольшее конечное число корней может иметь уравнение
где a1 , a2 , a50 , b1 , b2 , b50 – различные числа? BK – биссектриса треугольника ABC. Известно, что ∠AKB : ∠CKB = 4 : 5. Найдите разность углов A и C треугольника ABC. Через вершины B , C и D трапеции ABCD ( AD|| BC ) проведена окружность. Известно, что окружность касается прямой AB , а её центр лежит на диагонали BD . Найдите периметр трапеции ABCD , если BC=9 , AD=25 . Команды провели турнир по футболу в один круг (каждая с каждой сыграла один раз, победа – 3 очка, ничья – 1, поражение – 0). Оказалось, что единоличный победитель набрал менее 50% от количества очков, возможного для одного участника. Какое наименьшее количество команд могло участвовать в турнире? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]
Доказать, что если целое n > 2, то (n!)² > nn.
Из бумаги вырезан многоугольник. Две точки его границы соединяются отрезком, по которому многоугольник складывается. Доказать, что периметр многоугольника, получающегося после складывания, меньше периметра исходного многоугольника.
Для любых чисел a1 и a2, удовлетворяющих условиям a1 ≥ 0, a2 ≥ 0, a1 + a2 = 1, можно найти такие числа b1 и b2, что b1 ≥ 0, b2 ≥ 0, b1 + b2 = 1,
Имеется система уравнений *x + *y + *z = 0,*x + *y + *z = 0, *x + *y + *z = 0. Два человека поочерёдно вписывают вместо звёздочек числа.
На плоскости даны точки A и B. Построить такой квадрат, чтобы точки A и B лежали на его границе и сумма расстояний от точки A до вершин квадрата была наименьшей.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке