ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 78182  (#1)

Темы:   [ Уравнения в целых числах ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 10,11

Доказать, что не существует таких натуральных чисел x, y, z, k, что  xk + yk = zk  при условии  x < k,  y < k.

Прислать комментарий     Решение

Задача 78176  (#2)

Тема:   [ Площадь четырехугольника ]
Сложность: 2+
Классы: 9,10

Дан выпуклый четырёхугольник ABCD. Середины сторон AB и CD обозначим соответственно через K и M, точку пересечения AM и DK — через O, точку пересечения BM и CK — через P. Доказать, что площадь четырёхугольника MOKP равна сумме площадей треугольников BPC и AOD.
Прислать комментарий     Решение


Задача 78183  (#3)

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Тетраэдр и пирамида (прочее) ]
Сложность: 3+
Классы: 11

Существует ли тетраэдр, каждое ребро которого являлось бы стороной плоского тупого угла?
Прислать комментарий     Решение


Задача 78184  (#4)

Темы:   [ Числовые таблицы и их свойства ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 10,11

В квадратную таблицу N×N записаны все целые числа по следующему закону: 1 стоит на любом месте, 2 стоит в строке с номером, равным номеру столбца, содержащего 1, 3 стоит в строке с номером, равным номеру столбца, содержащего 2, и так далее. На сколько сумма чисел в столбце, содержащем N², отличается от суммы чисел в строке, содержащей 1.

Прислать комментарий     Решение

Задача 78185  (#5)

Темы:   [ Линейные неравенства и системы неравенств ]
[ Геометрическая прогрессия ]
[ Доказательство от противного ]
Сложность: 4
Классы: 9,10

Дана невозрастающая последовательность чисел   1/2k = a1a2 ≥ ... ≥ an ≥ ... > 0,  a1 + a2 + ... + an + ... = 1.
Доказать, что найдутся k чисел, из которых самое маленькое больше половины самого большого.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .