Страница: 1 [Всего задач: 4]
Задача
98061
(#1)
|
|
Сложность: 2+ Классы: 7,8
|
Докажите, что если произведение двух положительных чисел больше их
суммы, то сумма больше 4.
Вершины правильного треугольника расположены на сторонах AB, CD и EF правильного шестиугольника ABCDEF.
Докажите, что эти треугольник и шестиугольник имеют общий центр.
Задача
98063
(#3)
|
|
Сложность: 3 Классы: 6,7,8
|
Найдите 10 различных натуральных чисел, обладающих тем свойством, что их сумма
делится на каждое из них.
Задача
98064
(#4)
|
|
Сложность: 3+ Классы: 6,7,8
|
Доска 100×100 разбита на 10000 единичных квадратиков. Один из них
вырезали, так что образовалась дырка. Можно ли оставшуюся часть доски
покрыть равнобедренными прямоугольными треугольниками с гипотенузой длины 2 так,
чтобы их гипотенузы шли по сторонам квадратиков, а катеты – по диагоналям и
чтобы треугольники не налегали друг на друга и не свисали с доски?
Страница: 1 [Всего задач: 4]