Страница:
<< 1 2 3
4 5 >> [Всего задач: 23]
|
|
Сложность: 4- Классы: 7,8,9
|
a) Восемь школьников решали восемь задач. Оказалось, что каждую задачу решили пять школьников. Докажите, что найдутся такие два школьника, что каждую задачу решил хотя бы один из них.
б) Если каждую задачу решили четыре ученика, то может оказаться, что таких двоих не найдётся.
|
|
Сложность: 4- Классы: 8,9,10
|
Целые числа от 1 до n записаны в строчку. Под ними записаны те же числа в другом порядке. Может ли случиться так, что сумма каждого числа и записанного
под ним есть точный квадрат а) при n = 9, б) при n = 11, в) при n = 1996.
Точки
A и
B, лежащие на окружности разбивают её на две дуги. Найдите геометрическое место середин всевозможных хорд, концы которых лежат на разных дугах
AB.
Точки P1, P2, ..., Pn–1 делят сторону BC равностороннего треугольника ABC на n равных частей: BP1 = P1P2 = ... = Pn–lC. Точка M выбрана на стороне AC так, что AM = BP1.
Докажите, что ∠
AP1M + ∠
AP2M + ... + ∠
APn–1M = 30°, если
а)
n = 3;
б)
n – произвольное натуральное число.
|
|
Сложность: 4 Классы: 8,9,10
|
В углу шахматной доски размером m×n полей стоит ладья. Двое по очереди передвигают её по вертикали или по горизонтали на любое число полей; при этом не разрешается, чтобы ладья стала на поле или прошла через поле, на котором она уже побывала (или через которое уже проходила). Проигрывает тот, кому некуда
ходить. Кто из играющих может обеспечить себе победу: начинающий или его партнер, и как ему следует играть?
Страница:
<< 1 2 3
4 5 >> [Всего задач: 23]