Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 3+ Классы: 8,9,10
|
Положительные числа a, b, c таковы, что a² + b² – ab = c². Докажите, что (a – c)(b – c) ≤ 0.
|
|
Сложность: 3+ Классы: 10,11
|
В пространстве даны восемь параллельных плоскостей таких, что расстояния между
каждыми двумя соседними равны. На каждой из плоскостей выбирается по точке. Могут ли выбранные точки оказаться вершинами куба.
|
|
Сложность: 4 Классы: 9,10,11
|
Найдите какой-нибудь многочлен с целыми коэффициентами, корнем которого
является число + .
Точка X, лежащая вне непересекающихся окружностей ω1 и ω2, такова, что отрезки касательных, проведённых из X к ω1 и ω2, равны. Докажите, что точка пересечения диагоналей четырёхугольника, образованного точками касания, совпадает с точкой пересечения общих внутренних касательных к ω1 и ω2.
|
|
Сложность: 4+ Классы: 8,9,10
|
Докажите, что существует бесконечно много таких натуральных чисел n, что число n представимо в виде суммы квадратов двух натуральных чисел, а числа n – 1 и n + 1 – нет.
Страница: 1
2 >> [Всего задач: 6]