Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 4556]
Две окружности пересекаются в точках
M и
K.
Через
M и
K проведены прямые
AB и
CD соответственно,
пересекающие первую окружность в точках
A и
C, вторую
в точках
B и
D. Докажите, что
AC ||
BD.
Из произвольной точки
M, лежащей внутри данного
угла с вершиной
A, опущены перпендикуляры
MP и
MQ
на стороны угла. Из точки
A опущен перпендикуляр
AK
на отрезок
PQ. Докажите, что
PAK =
MAQ.
На окружности даны точки
A,
B,
C,
D в указанном
порядке.
M — середина дуги
AB. Обозначим точки пересечения
хорд
MC и
MD с хордой
AB через
E и
K. Докажите,
что
KECD — вписанный четырехугольник.
Две окружности пересекаются в точках
P и
Q.
Через точку
A первой окружности проведены прямые
AP
и
AQ, пересекающие вторую окружность в точках
B и
C.
Докажите, что касательная в точке
A к первой окружности
параллельна прямой
BC.
В окружность вписаны равнобедренные трапеции
ABCD
и
A1B1C1D1 с соответственно параллельными сторонами.
Докажите, что
AC =
A1C1.
Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 4556]