ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 4556]      



Задача 56542

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 2
Классы: 7,8

Две окружности пересекаются в точках M и K. Через M и K проведены прямые AB и CD соответственно, пересекающие первую окружность в точках A и C, вторую в точках B и D. Докажите, что  AC || BD.
Прислать комментарий     Решение


Задача 56543

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 2
Классы: 7,8

Из произвольной точки M, лежащей внутри данного угла с вершиной A, опущены перпендикуляры MP и MQ на стороны угла. Из точки A опущен перпендикуляр AK на отрезок PQ. Докажите, что  $ \angle$PAK = $ \angle$MAQ.
Прислать комментарий     Решение


Задача 56555

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 2
Классы: 8

На окружности даны точки A, B, C, D в указанном порядке. M — середина дуги AB. Обозначим точки пересечения хорд MC и MD с хордой AB через E и K. Докажите, что KECD — вписанный четырехугольник.
Прислать комментарий     Решение


Задача 56562

Тема:   [ Угол между касательной и хордой ]
Сложность: 2
Классы: 8

Две окружности пересекаются в точках P и Q. Через точку A первой окружности проведены прямые AP и AQ, пересекающие вторую окружность в точках B и C. Докажите, что касательная в точке A к первой окружности параллельна прямой BC.
Прислать комментарий     Решение


Задача 56572

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 2
Классы: 8,9

В окружность вписаны равнобедренные трапеции ABCD и  A1B1C1D1 с соответственно параллельными сторонами. Докажите, что AC = A1C1.
Прислать комментарий     Решение


Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 4556]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .