|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Интернет-ресурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Две окружности с радиусами 1 и 2 имеют общий центр в точке O. Вершина A правильного треугольника ABC лежит на большей окружности, а середина стороны BC – на меньшей. Чему может быть равен угол BOC? Числа a, b и c таковы, что (a + b)(b + c)(c + a) = abc, (a³ + b³)(b³ + c³)(c³ + a3) = a³b³c³. Докажите, что abc = 0. Определим последовательности чисел (xn) и
(dn) условиями x1 = 1, xn+1 = [ |
Страница: << 127 128 129 130 131 132 133 >> [Всего задач: 7526]
Две окружности пересекаются в точках A и B; AM и AN – диаметры окружностей. Докажите, что точки M, N и B лежат на одной прямой.
Постройте окружность данного радиуса, высекающую на данной прямой отрезок, равный данному.
Две хорды окружности взаимно перпендикулярны.
Докажите, что отличная от A точка пересечения окружностей, построенных на сторонах AB и AC треугольника ABC как на диаметрах, лежит на прямой BC.
Окружность, построенная на катете прямоугольного треугольника как на диаметре, делит гипотенузу пополам. Найдите углы треугольника.
Страница: << 127 128 129 130 131 132 133 >> [Всего задач: 7526] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|