ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]      



Задача 116244

Темы:   [ Параллельность прямых и плоскостей ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 10,11

В пространстве расположена замкнутая шестизвенная ломаная ABCDEF, противоположные звенья которой параллельны  (AB || DE,  BC || EF  и
CD || FA).  При этом AB не равно DE. Докажите, что все звенья ломаной лежат в одной плоскости.

Прислать комментарий     Решение

Задача 116245

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 9,10,11

Существуют ли такие натуральные числа a, b, c, d, что  a³ + b³ + c³ + d³ = 100100 ?

Прислать комментарий     Решение

Задача 116256

Темы:   [ Комбинаторика (прочее) ]
[ Раскраски ]
Сложность: 3
Классы: 8,9

У Миши есть 1000 одинаковых кубиков, у каждого из которых одна пара противоположных граней белая, вторая – синяя, третья – красная. Он собрал из них большой куб 10×10×10, прикладывая кубики друг к другу одноцветными гранями. Докажите, что у большого куба есть одноцветная грань.

Прислать комментарий     Решение

Задача 116399

Темы:   [ Процессы и операции ]
[ Теория алгоритмов ]
Сложность: 3
Классы: 10,11

100 пиратов сыграли в карты на золотой песок, а потом каждый посчитал, сколько он в сумме выиграл либо проиграл. У каждого проигравшего хватает золота, чтобы расплатиться. За одну операцию пират может либо раздать всем поровну золота, либо получить с каждого поровну золота. Докажите, что можно за несколько таких операций добиться того, чтобы каждый получил (в сумме) свой выигрыш либо выплатил проигрыш. (Разумеется, общая сумма выигрышей равна сумме проигрышей.)

Прислать комментарий     Решение

Задача 116407

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Поворот помогает решить задачу ]
Сложность: 3
Классы: 8,9

Малыш и Карлсон режут квадратный торт. Карлсон выбирает на нём точку (не на границе). После этого Малыш делает прямолинейный разрез от выбранной точки до края (в любом направлении). Затем Карлсон проводит второй прямолинейный разрез от выбранной точки до края, перпендикулярный первому, и отдаёт меньший из получившихся двух кусков Малышу. Малыш хочет получить хотя бы четверть торта. Может ли Карлсон ему помешать?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .