Страница: 1
2 >> [Всего задач: 7]
|
|
Сложность: 3 Классы: 10,11
|
Можно ли все прямые на плоскости разбить на пары перпендикулярных прямых?
|
|
Сложность: 3 Классы: 8,9,10,11
|
а) Есть кусок сыра. Разрешается выбрать любое положительное (возможно, нецелое) число a ≠ 1, и разрезать этот кусок в отношении 1 : a по весу, затем разрезать в том же отношении любой из имеющихся кусков, и т. д. Можно ли действовать так, что после конечного числа разрезаний весь сыр удастся разложить на две кучки равного веса?
б) Тот же вопрос, но выбирается положительное рациональное a ≠ 1.
|
|
Сложность: 4- Классы: 10,11
|
Можно ли, применяя к числу 1 функции sin, cos, tg, ctg, arcsin, arccos, arctg, arcctg в некотором порядке, получить число 2010? (Каждую функцию можно использовать сколько угодно раз.)
|
|
Сложность: 4 Классы: 10,11
|
На съезд собрались 5000 кинолюбителей, каждый видел хотя бы один фильм. Их делят на секции двух типов: либо обсуждение фильма, который все члены секции видели, либо каждый рассказывает о виденном фильме, который больше никто в секции не видел. Докажите, что всех можно разбить ровно на 100 секций. (Секции из одного человека разрешаются: он пишет отзыв о виденном фильме.)
|
|
Сложность: 4- Классы: 8,9,10,11
|
а) Три богатыря едут верхом по кольцевой дороге против часовой стрелки. Могут ли они ехать неограниченно долго с различными постоянными скоростями, если на дороге есть только одна точка, в которой богатыри имеют возможность обгонять друг друга?
А если богатырей
б) десять?
в) тридцать три?
Страница: 1
2 >> [Всего задач: 7]