Страница: << 1 2 3 >> [Всего задач: 12]
|
|
Сложность: 3+ Классы: 9,10,11
|
На сторонах AB и BC треугольника ABC взяты точки M и K соответственно так, что SKMC + SKAC =
SABC.
Докажите, что все такие прямые MK проходят через одну точку.
Дан равнобедренный треугольник ABC с основанием AC. H –
точка пересечения высот. На сторонах AB и BC выбраны точки M и K и соответственно так,
что ∠KMH = 90°. Докажите, что из отрезков AK, CM и MK можно сложить прямоугольный
треугольник.
|
|
Сложность: 4 Классы: 9,10,11
|
Из вершины A параллелограмма ABCD опущены высоты AM на BC
и AN на CD. P – точка пересечения BN и DM. Докажите, что прямые AP и MN
перпендикулярны.
|
|
Сложность: 4 Классы: 10,11
|
Bсе ребра правильной четырехугольной
пирамиды равны 1, а все вершины лежат на боковой поверхности
(бесконечного) прямого кругового цилиндра радиуса R.
Найдите все возможные значения R.
На сторонах AB и CD квадрата ABCD взяты точки K и
M соответственно, а на диагонали AC – точка L так, что ML = KL.
Пусть P – точка пересечения отрезков MK и BD.
Найдите угол KPL.
Страница: << 1 2 3 >> [Всего задач: 12]