Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Фишка стоит на одном из полей бесконечной в обе стороны клетчатой полоски бумаги. Она может сдвигаться на m полей вправо или на n полей влево.
При каких m и n она сможет переместиться в соседнюю справа клетку?

Вниз   Решение


Пусть  x1, x2,..., xn  – корни уравнения  anxn + ... + a1x + a0 = 0.  Какие корни будут у уравнений
  а)  a0xn + ... + an–1x + an = 0;
  б)  anx2n + ... + a1x² + a0 = 0?

ВверхВниз   Решение


Два колеса радиусов r и R катаются по прямой m. Найдите геометрическое место точек пересечения M их общих внутренних касательных.

ВверхВниз   Решение


Доказать, что квадрат натурального числа не может оканчиваться на две нечётные цифры.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 116579  (#9.1)

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10

На доске написаны несколько чисел. Известно, что квадрат каждого записанного числа больше произведения любых двух других записанных чисел. Какое наибольшее количество чисел может быть на доске?

Прислать комментарий     Решение

Задача 116587  (#10.1)

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9,10

Даны десять положительных чисел, каждые два из которых различны. Докажите, что среди них найдутся либо три числа, произведение которых больше произведения каких-нибудь двух из оставшихся, либо три числа, произведение которых больше произведения каких-нибудь четырёх из оставшихся.

Прислать комментарий     Решение

Задача 116595  (#11.1)

Тема:   [ Арифметическая прогрессия ]
Сложность: 2+
Классы: 8,9,10

Бесконечная возрастающая арифметическая прогрессия такова, что произведение каждых двух различных её членов – также член этой прогрессии. Докажите, что все её члены – целые числа.

Прислать комментарий     Решение

Задача 116755  (#9.1)

Темы:   [ Арифметика остатков (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Доказательство от противного ]
Сложность: 3
Классы: 9,10

Пусть  a1, ..., a11  – различные натуральные числа, не меньшие 2, сумма которых равна 407.
Может ли сумма остатков от деления некоторого натурального числа n на 22 числа  a1, ..., a11, 4a1, 4a2, ..., 4a11  равняться 2012?

Прислать комментарий     Решение

Задача 116763  (#10.1)

Темы:   [ Арифметика остатков (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 10,11

Пусть  a1, ..., a10  – различные натуральные числа, не меньшие 3, сумма которых равна 678. Может ли сумма остатков от деления некоторого натурального числа n на 20 чисел  a1, a2, ..., a10, 2a1, 2a2,..., 2a10  равняться 2012?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .