ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 116250  (#4)

Темы:   [ Целочисленные решетки (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9

Можно ли так раскрасить все клетки бесконечной клетчатой плоскости в белый и чёрный цвета, чтобы каждая вертикальная прямая и каждая горизонтальная прямая пересекали конечное число белых клеток, а каждая наклонная прямая конечное число чёрных?

Прислать комментарий     Решение

Задача 116007  (#4)

Темы:   [ Процессы и операции ]
[ Периодичность и непериодичность ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 8,9,10

В школе решили провести турнир по настольному теннису между математическими и гуманитарными классами. Команда гуманитарных классов состоит из n человек, команда математических – из m, причём  nm.  Так как стол для игры всего один, было решено играть следующим образом. Сначала какие-то два ученика из разных команд начинают играть между собой, а все остальные участники выстраиваются в одну общую очередь. После каждой игры человек, стоящий в очереди первым, заменяет за столом члена своей команды, который становится в конец очереди. Докажите, что рано или поздно каждый математик сыграет с каждым гуманитарием.

Прислать комментарий     Решение

Задача 32894  (#4)

Темы:   [ Целочисленные решетки (прочее) ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Автор: Ши Вэй Ли

Разрежьте фигуру, изображённую на рисунке, на две равные части.

Прислать комментарий     Решение

Задача 32888  (#4)

Темы:   [ Смешанные уравнения и системы уравнений ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 8,9

По кругу расставили 1000 чисел, среди которых нет нулей, и раскрасили их поочередно в белый и чёрный цвета. Оказалось, что каждое чёрное число равно сумме двух соседних с ним белых чисел, а каждое белое число равно произведению двух соседних с ним чёрных чисел. Чему может быть равна сумма всех расставленных чисел?

Прислать комментарий     Решение

Задача 116574  (#4)

Темы:   [ Свойства разверток ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 10,11

Известно, что всякую треугольную пирамиду, противоположные рёбра которой попарно равны, можно так разрезать вдоль трёх её рёбер и развернуть, чтобы её развёрткой стал треугольник без внутренних разрезов (см. рис.).

Найдётся ли еще какой-нибудь выпуклый многогранник, который можно так разрезать вдоль нескольких его рёбер и развернуть, чтобы его развёрткой стал треугольник без внутренних разрезов?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .