Страница:
<< 1 2
3 4 5 >> [Всего задач: 24]
Задача
64360
(#11.2)
|
|
Сложность: 3+ Классы: 10,11
|
Вписанная и вневписанная сферы треугольной пирамиды ABCD касаются её грани BCD в различных точках X и Y.
Докажите, что треугольник AXY тупоугольный.
Задача
64346
(#9.3)
|
|
Сложность: 4 Классы: 9,10
|
На доске написали 100 попарно различных натуральных чисел a1, a2, ..., a100. Затем под каждым числом ai написали число bi, полученное прибавлением к ai наибольшего общего делителя остальных 99 исходных чисел. Какое наименьшее количество попарно различных чисел может быть среди b1, b2, ..., b100?
Задача
64353
(#10.3)
|
|
Сложность: 4 Классы: 9,10,11
|
Найдите все такие натуральные k, что произведение первых k
простых чисел, уменьшенное на 1, является точной степенью натурального числа (большей чем первая).
Задача
64361
(#11.3)
|
|
Сложность: 4 Классы: 10,11
|
Найдите все такие натуральные k, что произведение первых k
нечётных простых чисел, уменьшенное на 1, является точной степенью натурального числа (большей, чем первая).
Задача
64347
(#9.4)
|
|
Сложность: 4 Классы: 9,10
|
На плоскости проведены n прямых, среди которых нет параллельных. Никакие три из них не пересекаются в одной точке. Докажите, что существует такая n-звенная несамопересекающаяся ломаная A0A1A2...An, что на каждой из n прямых лежит ровно по одному звену этой ломаной.
Страница:
<< 1 2
3 4 5 >> [Всего задач: 24]