Страница: 1
2 >> [Всего задач: 8]
Задача
64344
(#10.1)
|
|
Сложность: 3+ Классы: 9,10
|
Даны различные действительные числа a, b, с. Докажите, что хотя бы два из уравнений (x – a)(x – b) = x – c, (x – b)(x – c) = x – a,
(x – c)(x – a) = x – b имеют решение.
Задача
64352
(#10.2)
|
|
Сложность: 4- Классы: 9,10,11
|
На окружности отметили n точек, разбивающие её на n дуг. Окружность повернули вокруг центра на угол 2πk/n (при некотором натуральном k), в результате чего отмеченные точки перешли в n новых точек, разбивающих окружность на n новых дуг.
Докажите, что найдётся новая дуга, которая целиком лежит в одной из старых дуг. (Считается, что концы дуги ей принадлежат.)
Задача
64353
(#10.3)
|
|
Сложность: 4 Классы: 9,10,11
|
Найдите все такие натуральные k, что произведение первых k
простых чисел, уменьшенное на 1, является точной степенью натурального числа (большей чем первая).
Задача
64354
(#10.4)
|
|
Сложность: 5- Классы: 9,10,11
|
Внутри вписанного четырёхугольника ABCD отмечены такие точки P и Q, что ∠PDC + ∠PCB = ∠PAB + ∠PBC = ∠QCD + ∠QDA = ∠QBA + ∠QAD = 90°.
Докажите, что прямая PQ образует равные углы с прямыми AD и BC.
Задача
64355
(#10.5)
|
|
Сложность: 3+ Классы: 9,10,11
|
Существует ли такое натуральное n, что для любых ненулевых цифр a и b число anb делится на ab ? (Через x...y обозначено число, получаемое приписыванием друг к другу десятичных записей чисел x, ..., y.)
Страница: 1
2 >> [Всего задач: 8]