Страница:
<< 1 2 3
4 5 >> [Всего задач: 24]
Задача
64354
(#10.4)
|
|
Сложность: 5- Классы: 9,10,11
|
Внутри вписанного четырёхугольника ABCD отмечены такие точки P и Q, что ∠PDC + ∠PCB = ∠PAB + ∠PBC = ∠QCD + ∠QDA = ∠QBA + ∠QAD = 90°.
Докажите, что прямая PQ образует равные углы с прямыми AD и BC.
Задача
64362
(#11.4)
|
|
Сложность: 5 Классы: 10,11
|
На каждой из 2013 карточек написано по числу, все эти 2013 чисел различны.
Карточки перевёрнуты числами вниз. За один ход разрешается указать на десять карточек, и в ответ сообщат одно из чисел, написанных на них (неизвестно, какое).
Для какого наибольшего t гарантированно удастся найти t карточек, про которые известно, какое число написано на каждой из них?
Задача
64348
(#9.5)
|
|
Сложность: 3+ Классы: 9,10
|
По кругу расставлено 2n действительных чисел, сумма которых положительна. Для каждого из них рассмотрим обе группы из n подряд стоящих чисел, в которых это число является крайним. Докажите, что найдётся число,
для которого сумма чисел в каждой из двух таких групп положительна.
Задача
64355
(#10.5)
|
|
Сложность: 3+ Классы: 9,10,11
|
Существует ли такое натуральное n, что для любых ненулевых цифр a и b число anb делится на ab ? (Через x...y обозначено число, получаемое приписыванием друг к другу десятичных записей чисел x, ..., y.)
Задача
64363
(#11.5)
|
|
Сложность: 3+ Классы: 10,11
|
Из целых чисел от 0 до 1000 выбрали 101 число.
Докажите, что среди модулей их попарных разностей есть десять различных чисел, не превосходящих 100.
Страница:
<< 1 2 3
4 5 >> [Всего задач: 24]