ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 [Всего задач: 12]      



Задача 64759

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанные и описанные окружности ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4

Дан правильный треугольник ABC, площадь которого равна 1, и точка P на его описанной окружности. Прямые AP, BP, CP пересекают соответственно прямые BC, CA, AB в точках A', B', C'. Найдите площадь треугольника A'B'C'.

Прислать комментарий     Решение

Задача 64760

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Проективная геометрия (прочее) ]
Сложность: 5

Дан выпуклый четырёхугольник ABCD. Пусть I и J – центры окружностей, вписанных в треугольники ABC и ADC соответственно, а Ia и Ja – центры вневписанных окружностей треугольников ABC и ADC, вписанных в углы BAC и DAC соответственн). Докажите, что точка K пересечения прямых IJa и JIa лежит на биссектрисе угла BCD.

Прислать комментарий     Решение

Страница: << 1 2 3 [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .