Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 66642  (#1 [8 кл])

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Окружность, вписанная в угол ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Внутри квадрата расположены три окружности, каждая из которых касается внешним образом двух других, а также касается двух сторон квадрата. Докажите, что радиусы двух из данных окружностей одинаковы.
Прислать комментарий     Решение


Задача 66643  (#2 [8 кл])

Темы:   [ Вписанные четырехугольники ]
[ Углы между биссектрисами ]
Сложность: 3
Классы: 8,9

Дан вписанный четырехугольник ABCD. Прямые AB и DC пересекаются в точке E, а прямые BC и AD — в точке F. В треугольнике AED отмечен центр вписанной окружности I, а из точки F проведен луч, перпендикулярный биссектрисе угла AID. В каком отношении этот луч делит угол AFB?
Прислать комментарий     Решение


Задача 66644  (#3 [8 кл])

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Пусть AL — биссектриса треугольника ABC, точка D — ее середина, E — проекция D на AB. Известно, что AC=3AE. Докажите, что треугольник CEL равнобедренный.
Прислать комментарий     Решение


Задача 66645  (#4 [8 кл])

Темы:   [ Вписанные четырехугольники ]
[ Угол между касательной и хордой ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Четырехугольник ABCD вписан в окружность. По дуге AD, не содержащей точек B и C, движется точка P. Фиксированная прямая l, перпендикулярная прямой BC, пересекает лучи BP, CP в точках B0, C0 соответственно. Докажите, что касательная, проведенная к описанной окружности треугольника PB0C0 в точке P, проходит через фиксированную точку.
Прислать комментарий     Решение


Задача 66646  (#5 [8-9 кл])

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 8,9

У равносторонних треугольников ABC и CDE вершина C лежит на отрезке AE, вершины B и D по одну сторону от этого отрезка. Описанные около треугольников окружности с центрами O1 и O2 повторно пересекаются в точке F. Прямая O1O2 пересекает AD в точке K. Докажите, что AK=BF.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .