|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На сторонах AB, BC и AC треугольника ABC даны точки M, N и P соответственно. Докажите: а) если точки M1, N1 и P1 симметричны точкам M, N и P относительно середин соответствующих сторон, то SMNP = SM1N1P1. б) если M1, N1 и P1 — такие точки сторон AC, BA и CB, что MM1| BC, NN1| CA и PP1| AB, то SMNP = SM1N1P1. Какими должны быть числа a и b, чтобы выполнялось равенство x³ + px + q = x³ – a³ – b³ – 3abx? Четырёхугольник ABCD без параллельных сторон вписан в окружность. Для каждой пары касающихся окружностей, одна из которых имеет хорду AB, а другая – хорду CD, отметим их точку касания X. Докажите, что все такие точки X лежат на одной окружности. Точечный прожектор, находящийся в вершине B равностороннего треугольника ABC, освещает угол α. Найдите все такие значения α, не превосходящие 60°, что при любом положении прожектора, когда освещенный угол целиком находится внутри угла ABC, из освещенного и двух неосвещенных отрезков стороны AC можно составить треугольник. Известно, что число n является суммой квадратов трёх натуральных чисел. Показать, что число n² тоже является суммой квадратов трёх натуральных чисел. |
Страница: 1 2 >> [Всего задач: 8]
Страница: 1 2 >> [Всего задач: 8] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|