Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 48]
Задача
66794
(#8.2)
|
|
Сложность: 3 Классы: 8,9,10,11
|
Внутри треугольника $ABC$ взята такая точка $M$, что $AM = \frac{1}{2} AB$, а $CM = \frac{1}{2} BC$. Точки $C_0$ и $A_0$ взяты на отрезках $AB$ и $CB$ соответственно, причем $BC_0 : AC_0 = BA_0 : CA_0 = 3$. Докажите, что $M$ равноудалена от $C_0$ и $A_0$.
Задача
66795
(#8.3)
|
|
Сложность: 4 Классы: 8,9,10,11
|
С помощью фанерного квадрата постройте правильный треугольник (
можно проводить прямые через две точки, расстояние между которыми не превышает стороны квадрата, проводить перпендикуляр из точки на прямую, если расстояние между ними не превышает стороны квадрата, и откладывать на проведенных прямых отрезки, равные стороне или диагонали квадрата).
Задача
66796
(#8.4)
|
|
Сложность: 4 Классы: 8,9,10,11
|
В остроугольном треугольнике $ABC$ точки $O$ и $H$ – центр описанной окружности и ортоцентр соответственно, $AB < AC$. Прямая, проходящая через середину $K$ отрезка $AH$ и перпендикулярная $OK$, пересекает сторону $AB$ и касательную к описанной окружности в точке $A$ в точках $X$ и $Y$ соответственно. Докажите, что $\angle XOY=\angle AOB$.
Задача
66797
(#8.5)
|
|
Сложность: 3 Классы: 8,9,10,11
|
На клетчатой бумаге нарисовали треугольник, один из углов которого равен $45^{\circ}$ (см.рис.). Найдите значения остальных углов.
![](show_document.php?id=1722643)
Задача
66798
(#8.6)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Точка $H$ лежит на стороне $AB$ правильного пятиугольника $ABCDE$. Окружность с центром $H$ и радиусом $HE$ пересекает отрезки $DE$ и $CD$ в точках $G$ и $F$ соответственно. Известно, что $DG=AH$. Докажите, что $CF=AH$.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 48]