ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]      



Задача 66809  (#10.1)

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 9,10,11

Автор: Dadgarnia A.

В треугольнике $ABC$ $\angle A= 45^{\circ}$. Точка $A'$ диаметрально противоположна $A$ на описанной окружности треугольника. Точки $E$, $F$ на сторонах $AB$, $AC$ соответственно таковы. что $A'B=BE$, $A'C=CF$. Пусть $K$ – вторая точка пересечения окружностей $AEF$ и $ABC$. Докажите, что прямая $EF$ делит пополам отрезок $A'K$.
Прислать комментарий     Решение


Задача 66810  (#10.2)

Тема:   [ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 9,10,11

Автор: Ивлев Ф.

Пусть $A_1$, $B_1$, $C_1$ – середины сторон $BC$, $AC$ и $AB$ треугольника $ABC$, $K$ – основание высоты, проведенной из вершины $A$, а $L$ – точка касания вписанной окружности $\gamma$ со стороной $BC$. Описанные окружности треугольников $LKB_1$ и $A_1LC_1$ вторично пересекают прямую $B_1C_1$ в точках $X$ и $Y$ соответственно. Окружность $\gamma$ пересекает эту прямую в точках $Z$ и $T$. Докажите, что $XZ = YT$.
Прислать комментарий     Решение


Задача 66811  (#10.3)

Темы:   [ Точка Микеля ]
[ Поворотная гомотетия (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Теоремы Чевы и Менелая ]
[ Изогональное сопряжение ]
Сложность: 5
Классы: 9,10,11

Автор: Bhattacharya A.

Пусть точки $P$ и $Q$ изогонально сопряжены относительно треугольника $ABC$. Точка $A_1$, лежащая на дуге $BC$ описанной около треугольника окружности $\omega$, удовлетворяет условию $\angle BA_1P=\angle CA_1Q$. Точки $B_1$ и $C_1$ определены аналогично. Докажите, что прямые $AA_1$, $BB_1$ и $CC_1$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 66812  (#10.4)

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Точка Нагеля. Прямая Нагеля ]
Сложность: 5
Классы: 9,10,11

Докажите, что сумма двух нагелиан больше полупериметра треугольника.
Прислать комментарий     Решение


Задача 66813  (#10.5)

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 3+
Классы: 9,10,11

Пусть $AA_1$, $BB_1$, $CC_1$ – высоты треугольника $ABC$; $A_0$, $C_0$ – точки пересечения описанной окружности треугольника $A_1BC_1$ с прямыми $A_1B_1$ и $C_1B_1$ соответственно. Докажите, что прямые $AA_0$ и $CC_0$ пересекаются на медиане треугольника $ABC$ или параллельны ей.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .