ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Основания трапеции равны 3 см и 5 см. Одна из диагоналей трапеции равна 8 см, угол между диагоналями равен 60o. Найдите периметр трапеции.
|
Страница: << 249 250 251 252 253 254 255 >> [Всего задач: 1331]
На листке бумаги написаны натуральные числа от 1 до N. Игроки по очереди обводят в кружок одно число, соблюдая условие: любые два уже обведённых
числа должны быть взаимно простыми. Два раза число обводить нельзя. Проигрывает тот, у кого нет хода.
Можно ли раскрасить натуральные числа в 2009 цветов так, чтобы каждый цвет встречался бесконечное число раз, и не нашлось тройки чисел, покрашенных в три различных цвета, таких, что произведение двух из них равно третьему?
На собрание пришло n человек (n > 1). Оказалось, что у каждых двух из них среди собравшихся есть ровно двое общих знакомых.
На доске можно либо написать две единицы, либо стереть любые два уже написанных одинаковых числа n и написать вместо них числа n + 1 и n – 1. Какое минимальное количество таких операций требуется, чтобы получить число 2005? (Сначала доска была чистой.)
Некоторые из чисел 1, 2, 3, ..., n покрашены в красный цвет так, что выполняется условие: если для красных чисел a,b,c (не обязательно различных) a(b−c) делится на n, то b=c.
Страница: << 249 250 251 252 253 254 255 >> [Всего задач: 1331]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке