Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите, что произвольный треугольник можно разрезать на три многоугольника, один из которых должен быть тупоугольным треугольником, так, чтобы потом сложить из них прямоугольник. (Переворачивать части можно).

Вниз   Решение


Автор: Смирнов А.

Натуральные числа от 1 до 100 расставлены по кругу в таком порядке, что каждое число либо больше обоих соседей, либо меньше обоих соседей. Пара соседних чисел называется хорошей, если при выкидывании этой пары вышеописанное свойство сохраняется. Какое минимальное количество хороших пар может быть?

Вверх   Решение

Задачи

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 352]      



Задача 65955

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Признаки и свойства параллелограмма ]
[ Равные треугольники. Признаки равенства ]
[ Правильный (равносторонний) треугольник ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средняя линия трапеции ]
Сложность: 4-
Классы: 8,9

На боковых сторонах AB и AC равнобедренного треугольника ABC отметили точки K и L соответственно так, что  AK = CL  и  ∠ALK + ∠LKB = 60°.
Докажите, что  KL = BC.

Прислать комментарий     Решение

Задача 66750

Темы:   [ Вписанный угол равен половине центрального ]
[ Правильный (равносторонний) треугольник ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Теорема синусов ]
Сложность: 4-
Классы: 8,9,10,11

Внутри равнобедренного треугольника ABC отмечена точка K так, что  CK=AB=BC  и  ∠ KAC = 30°.  Найдите угол AKB.

Прислать комментарий     Решение

Задача 67210

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
Сложность: 4-
Классы: 8,9,10,11

Дан вписанный четырехугольник ABCD. На сторонах AD и CD взяты точки E и F так, что AE=BC и AB=CF. Пусть M – середина EF. Докажите, что угол AMC прямой.
Прислать комментарий     Решение


Задача 108128

Темы:   [ Ортоцентр и ортотреугольник ]
[ Признаки и свойства параллелограмма ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 4-
Классы: 8,9

В остроугольном треугольнике ABC проведены высоты AHA, BHB и CHC.
Докажите, что треугольник с вершинами в ортоцентрах треугольников AHBHC, BHAHC и CHAHB равен треугольнику HAHBHC.

Прислать комментарий     Решение

Задача 108640

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Пересекающиеся окружности ]
[ Вспомогательные равные треугольники ]
[ Пересекающиеся окружности ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 8,9

На плоскости даны две пересекающиеся окружности. Точка A – одна из двух точек пересечения. В каждой окружности проведён диаметр, параллельный касательной в точке A к другой окружности, причём эти диаметры не пересекаются. Докажите, что концы этих диаметров лежат на одной окружности.

Прислать комментарий     Решение

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 352]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .