ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан квадратный лист бумаги со стороной 1. Отмерьте на этом листе расстояние ⅚ (лист можно сгибать, в том числе, по любому отрезку с концами на краях бумаги и разгибать обратно; после разгибания на бумаге остаётся след от линии сгиба). B некотором треугольнике биссектрисы двух внутренних углов продолжили до пересечения с описанной окружностью и получили две равные хорды. Bерно ли, что треугольник равнобедренный? Расставьте по кругу четыре единицы, три двойки и три тройки так, чтобы сумма любых трёх подряд стоящих чисел не делилась на 3. 30 тремя одинаковыми цифрами. Число 30 запишите в виде четырех различных выражений, из трех одинаковых цифр каждое. Цифры могут быть соединены знаками действий. Диагонали вписанного четырехугольника ABCD пересекаются в точке K. Прямая a пересекает плоскость α. Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от a и не пересекающих a. Квадрат и прямоугольник одинакового периметра имеют общий угол. Докажите, что точка пересечения диагоналей прямоугольника лежит на диагонали квадрата. Трапеция ABCD и параллелограмм MBDK расположены так, что стороны параллелограмма параллельны диагоналям трапеции (см. рис.). Докажите, что площадь серой части равна сумме площадей черных частей. Существуют ли два таких четырехугольника, что стороны первого меньше соответствующих сторон второго, а соответствующие диагонали больше? |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 142]
Основания трапеции равны a и b, углы при большем основании равны 30o и 45o. Найдите площадь трапеции.
В треугольнике ABC ∠A = 60°. Серединный перпендикуляр к стороне AB пересекает прямую AC в точке N. Серединный перпендикуляр к стороне AC пересекает прямую AB в точке M. Докажите, что CB = MN.
Дан треугольник ABC. Точка A1 симметрична вершине A относительно прямой BC, а точка C1 симметрична вершине C относительно прямой AB.
Дано, что ни для какой стороны треугольника из проведённых к ней высоты, биссектрисы и медианы нельзя составить треугольник.
Докажите, что в прямоугольном треугольнике с углом $30$ градусов одна биссектриса в два раза короче другой.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 142]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке