Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Четырёхугольник $ABCD$ вписан в окружность с центром $O$. Пусть $P$ – точка пересечения его диагоналей, а точки $M$ и $N$ – середины сторон $AB$ и $CD$ соответственно. Окружность $OPM$ вторично пересекает отрезки $AP$ и $BP$ в точках $A_1$ и $B_1$ соответственно, а окружность $OPN$ вторично пересекает отрезки $CP$ и $DP$ в точках $C_1$ и $D_1$ соответственно. Докажите, что площади четырёхугольников $AA_1B_1B$ и $CC_1D_1D$ равны.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 109172

Темы:   [ Замена переменных (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Многочлены (прочее) ]
[ Исследование квадратного трехчлена ]
Сложность: 3
Классы: 9,10

Дан многочлен  x(x + 1)(x + 2)(x + 3).  Найти его наименьшее значение.

Прислать комментарий     Решение

Задача 116714

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Замена переменных (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

На плоскости нарисовали кривые  y = cos x  и  x = 100 cos(100y)  и отметили все точки их пересечения, координаты которых положительны. Пусть a – сумма абсцисс, а b – сумма ординат этих точек. Найдите  a/b.

Прислать комментарий     Решение

Задача 73712

Темы:   [ Иррациональные уравнения ]
[ Замена переменных (прочее) ]
[ Симметрические системы. Инволютивные преобразования ]
[ Симметрия и инволютивные преобразования ]
[ Методы решения задач с параметром ]
Сложность: 4+
Классы: 10,11

Автор: Темиров Т.

Пусть a – заданное вещественное число, n – натуральное число,  n > 1.
Найдите все такие x, что сумма корней n-й степени из чисел  xn – an  и  2an – xn  равна числу a.

Прислать комментарий     Решение

Задача 108984

Темы:   [ Иррациональные уравнения ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Замена переменных (прочее) ]
Сложность: 4+
Классы: 9,10

Найти все действительные решения уравнения

36/+4/=28-4-.

Прислать комментарий     Решение

Задача 30891

Темы:   [ Алгебраические неравенства (прочее) ]
[ Формулы сокращенного умножения (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Замена переменных (прочее) ]
Сложность: 3+
Классы: 6,7

Докажите, что при любом x выполняется неравенство  x(x + 1)(x + 2)(x + 3) ≥ –1.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .