ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Из точки M на плоскость α опущен перпендикуляр
MH длины В некоторой точке круглого острова радиусом 1 км зарыт клад. На берегу острова стоит математик с прибором, который указывает направление на клад, когда расстояние до клада не превосходит 500 м. Кроме того, у математика есть карта острова, на которой он может фиксировать все свои перемещения, выполнять измерения и геометрические построения. Математик утверждает, что у него есть алгоритм, как добраться до клада, пройдя меньше 4 км. Может ли это быть правдой?
На рисунке изображена фигура ABCD .
Стороны AB , CD и AD этой фигуры– отрезки
(причём AB||CD и AD |
Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 1282]
На окружности по разные стороны от диаметра AB расположены точки C и D. Известно, что AC = 4, BD =
В окружность диаметра 1 вписан четырёхугольник ABCD, у которого угол D прямой, AB = BC.
В окружность радиуса 5 вписан четырёхугольник ABCD, у которого угол D прямой, AB : BC = 3 : 4.
Окружность касается стороны BC треугольника ABC в точке M, стороны AC — в точке N, а сторону AB пересекает в точках K и L, причём KLMN — квадрат. Найдите углы треугольника ABC.
В треугольнике ABC стороны CB и CA равны соответственно a и b. Биссектриса угла ACB пересекает сторону AB в точке K, а описанную окружность треугольника ABC – в точке M. Описанная окружность треугольника AMK вторично пересекает прямую CA в точке P. Найдите AP.
Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 1282]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке