ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи У числа 21970 зачеркнули его первую цифру и прибавили её к оставшемуся числу. С результатом проделали ту же операцию и т.д., до тех пор пока не получили десятизначное число. Доказать, что в этом числе есть две одинаковые цифры.
В четырёхугольнике ABCD диагонали AC и BD относятся как 1:4 , а
угол между ними равен 60o . Чему равен больший из отрезков,
соединяющих середины противоположных сторон четырёхугольника ABCD ,
если меньший равен |
Страница: << 111 112 113 114 115 116 117 >> [Всего задач: 772]
Дан треугольник со сторонами 10, 24 и 26. Две меньшие стороны являются касательными к окружности, центр которой лежит на большей стороне.
На окружности радиуса 12 с центром в точке O лежат точки A и B. Прямые AC и BC касаются этой окружности. Другая окружность с центром в точке M вписана в треугольник ABC и касается стороны AC в точке K, а стороны BC – в точке H. Расстояние от точки M до прямой KH равно 3. Найдите ∠AOB.
Около окружности описана равнобедренная трапеция ABCD. Боковая сторона AB касается окружности в точке M, а основание AD – в точке N. Отрезки MN и AC пересекаются в точке P, причём NP : PM = 2. Найдите отношение AD : BC.
Около окружности описана равнобедренная трапеция ABCD. Меньшее основание BC касается окружности в точке M, боковая сторона CD – в точке N. Высота CE пересекает отрезок MN в точке P, причём MP : PN = 2. Найдите отношение AD : BC.
Центр O окружности радиуса 3 лежит на гипотенузе AC прямоугольного треугольника ABC. Катеты треугольника касаются окружности.
Страница: << 111 112 113 114 115 116 117 >> [Всего задач: 772]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке