ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Вдоль прямолинейного участка границы установлено 15 столбов. Около каждого столба поймали несколько близоруких шпионов. Для каждого столба одного из пойманных около него шпионов допросили. Каждый из допрошенных честно сказал, сколько других шпионов он видел. При этом видел он только тех, кто находился около его столба и около ближайших соседних столбов. Можно ли по этим данным восстановить численность шпионов, пойманных около каждого столба? Окружность, центр которой лежит внутри квадрата PQRS, проходит через точки Q и R. Докажите, что для любого натурального числа a1 > 1 существует такая возрастающая последовательность натуральных чисел a1, a2, a3, ..., Найдите двузначное число, которое вдвое больше произведения своих цифр. Построить треугольник ABC по точкам M и N — основаниям высот AM и BN — и прямой, на которой лежит сторона AB. |
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 233]
Требуется сделать набор гирек, каждая из которых весит целое число граммов,
с помощью которых можно взвесить любой целый вес от 1 до 55 граммов включительно даже в том случае, если некоторые гирьки потеряны (гирьки кладутся на одну чашку весов, измеряемый вес – на другую). Рассмотрите два варианта задачи:
По данному натуральному числу a0 строится последовательность {an} следующим образом
На окружности даны 10 точек. Сколькими способами можно провести пять отрезков, не имеющих общих точек, с концами в данных точках?
Числовая последовательность A1, A2, ..., An, ... определена равенствами A1 = 1, A2 = – 1, An = – An–1 – 2An–2 (n ≥ 3).
Пусть a0 – целое, a1, ..., an – натуральные числа. Определим две последовательности
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 233]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке