Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Натуральные числа M и K отличаются перестановкой цифр.
Доказать, что
  а) сумма цифр числа 2M равна сумме цифр числа 2K;
  б) сумма цифр числа M/2  равна сумме цифр числа K/2  (если M и K чётны);
  в) сумма цифр числа 5M равна сумме цифр числа 5K.

Вниз   Решение


Четырёхугольник ABCD вписан в окружность Ω с центром O, причём O не лежит на диагоналях четырёхугольника. Описанная окружность Ω1 треугольника AOC проходит через середину диагонали BD. Докажите, что описанная окружность Ω2 треугольника BOD проходит через середину диагонали AC.

ВверхВниз   Решение


Радиус окружности равен 13, хорда равна 10. Найдите её расстояние от центра.

Вверх   Решение

Задачи

Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 1224]      



Задача 35210

Темы:   [ Индукция (прочее) ]
[ Процессы и операции ]
Сложность: 4-
Классы: 7,8,9,10

Колода из 36 карт сложена так, что через четыре карты масть повторяется. Несколько карт сверху сняли, не перекладывая перевернули и вставили произвольным образом (не обязательно подряд) между оставшимися. После этого колоду разделили на 9 стопок по 4 идущие подряд карты. Докажите, что в каждой из этих стопок встретится по одной карте каждой масти.
Прислать комментарий     Решение


Задача 35226

Темы:   [ НОД и НОК. Взаимная простота ]
[ Процессы и операции ]
[ Целочисленные решетки (прочее) ]
[ Периодичность и непериодичность ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 4-
Классы: 8,9,10,11

Можно ли расставить во всех точках плоскости с целыми координатами натуральные числа так, чтобы каждое натуральное число стояло в какой-нибудь точке, и чтобы на каждой прямой, проходящей через две точки с целыми координатами, но не проходящей через начало координат, расстановка чисел была периодической?

Прислать комментарий     Решение

Задача 35336

Темы:   [ Ребусы ]
[ Перебор случаев ]
Сложность: 4-
Классы: 8,9

ABCDEF – число из шести цифр. Все они разные и расположены слева направо в возрастающем порядке. Число это – полный квадрат.
Определите, какое это число.

Прислать комментарий     Решение

Задача 35467

Темы:   [ Средние величины ]
[ Процессы и операции ]
[ Полуинварианты ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 8,9,10

Даны 10 чисел – одна единица и 9 нулей. Разрешается выбирать два числа и заменять каждое из них их средним арифметическим.
Какое наименьшее число может оказаться на месте единицы?

Прислать комментарий     Решение

Задача 35499

Темы:   [ Турниры и турнирные таблицы ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

В хоккейном турнире принимают участие n команд. Каждая команда встречается с каждой по одному разу, при этом выигравшей команде присуждается 2 очка, сыгравшей вничью – 1, проигравшей – 0 очков. Какой максимальный разрыв в очках может быть между командами, занявшими соседние места?

Прислать комментарий     Решение

Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 1224]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .