ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Натуральные числа M и K отличаются перестановкой цифр.
Четырёхугольник ABCD вписан в окружность Ω с центром O, причём O не лежит на диагоналях четырёхугольника. Описанная окружность Ω1 треугольника AOC проходит через середину диагонали BD. Докажите, что описанная окружность Ω2 треугольника BOD проходит через середину диагонали AC. Радиус окружности равен 13, хорда равна 10. Найдите её расстояние от центра. |
Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 1224]
Колода из 36 карт сложена так, что через четыре карты масть повторяется. Несколько карт сверху сняли, не перекладывая перевернули и вставили произвольным образом (не обязательно подряд) между оставшимися. После этого колоду разделили на 9 стопок по 4 идущие подряд карты. Докажите, что в каждой из этих стопок встретится по одной карте каждой масти.
Можно ли расставить во всех точках плоскости с целыми координатами натуральные числа так, чтобы каждое натуральное число стояло в какой-нибудь точке, и чтобы на каждой прямой, проходящей через две точки с целыми координатами, но не проходящей через начало координат, расстановка чисел была периодической?
ABCDEF – число из шести цифр. Все они разные и расположены слева направо в возрастающем порядке. Число это – полный квадрат.
Даны 10 чисел – одна единица и 9 нулей. Разрешается выбирать два числа и заменять каждое из них их средним арифметическим.
В хоккейном турнире принимают участие n команд. Каждая команда встречается с каждой по одному разу, при этом выигравшей команде присуждается 2 очка, сыгравшей вничью – 1, проигравшей – 0 очков. Какой максимальный разрыв в очках может быть между командами, занявшими соседние места?
Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 1224]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке