ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В некоторой стране 30 городов, причём каждый соединён с каждым дорогой. Даны отрезок AB, прямая l и точка O на ней. С помощью прямого угла постройте на прямой l такую точку X, что OX = AB.
На диагонали BD параллелограмма ABCD взята точка K. Прямая AK пересекает прямые BC и CD в точках L и M. Докажите, что AK² = LK·KM. |
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 831]
Рассматриваются все треугольники АВС, у которых положение вершин В и С зафиксировано, а вершина А перемещается в плоскости треугольника так, что медиана СМ имеет одну и ту же длину. По какой траектории движется точка А?
На плоскости дана несамопересекающаяся замкнутая ломаная, никакие три вершины которой не лежат на одной прямой. Назовём пару несоседних звеньев особой, если продолжение одного из них пересекает другое звено. Докажите, что число особых пар чётно.
На плоскости нарисовано несколько точек. Докажите, что можно провести прямую так, чтобы расстояния от всех точек до неё были различными.
Дано бесконечное число углов. Докажите, что этими углами можно покрыть плоскость.
Существует ли в пространстве замкнутая самопересекающаяся ломаная, которая пересекает каждое свое звено ровно один раз, причём в его середине?
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 831]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке