ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Дано число  H = 2·3·5·7·11·13·17·19·23·29·31·37  (произведение простых чисел). Пусть 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, ..., H – все его делители, выписанные в порядке возрастания. Под рядом делителей выпишем ряд из единиц и минус единиц по следующему правилу: под единицей 1, под числом, которое разлагается на чётное число простых сомножителей, 1, и под числом, которое разлагается на нечётное число простых сомножителей, –1. Доказать, что сумма чисел полученного ряда равна 0.

Вниз   Решение


Докажите, что корень a многочлена P(x) имеет кратность больше 1 тогда и только тогда, когда  P(a) = 0  и  P'(a) = 0.

Вверх   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 993]      



Задача 53839

Темы:   [ Ромбы. Признаки и свойства ]
[ Подобные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 3
Классы: 8,9

В равнобедренный треугольник ABC вписан ромб DECF так, что вершина E лежит на стороне BC, вершина F – на стороне AC и вершина D – на стороне AB. Найдите длину стороны ромба, если  AB = BC = 12,  AC = 6.

Прислать комментарий     Решение

Задача 53840

Темы:   [ Ромбы. Признаки и свойства ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

На каждой стороне ромба находится по одной вершине квадрата, стороны которого параллельны диагоналям ромба.
Найдите сторону квадрата, если диагонали ромба равны 8 и 12.

Прислать комментарий     Решение

Задача 54072

Темы:   [ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Периметр треугольника ]
Сложность: 3
Классы: 8,9

Из произвольной точки основания равнобедренного треугольника с боковой стороной, равной a, проведены прямые, параллельные боковым сторонам. Найдите периметр получившегося четырёхугольника.

Прислать комментарий     Решение

Задача 54073

Темы:   [ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
Сложность: 3
Классы: 8,9

Биссектриса угла параллелограмма делит сторону параллелограмма на отрезки, равные a и b. Найдите стороны параллелограмма.

Прислать комментарий     Решение

Задача 54089

Темы:   [ Ромбы. Признаки и свойства ]
[ Пересекающиеся окружности ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Две равные окружности с центрами O1 и O2 пересекаются в точках A и B. Отрезок O1O2 пересекает эти окружности в точках M и N.
Докажите, что четырёхугольники O1AO2B и AMBN – ромбы.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 993]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .