Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Через одну из точек пересечения двух равных окружностей проведена общая секущая. Докажите, что отрезок этой секущей, заключённый между окружностями, делится пополам окружностью, построенной на общей хорде этих окружностей как на диаметре.

   Решение

Задачи

Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 540]      



Задача 108853

Темы:   [ Задачи на максимум и минимум (прочее) ]
[ Правильная пирамида ]
Сложность: 4
Классы: 8,9

Найдите наибольший возможный угол между плоскостью боковой грани и не принадлежащим ей боковым ребром правильной четырёхугольной пирамиды.
Прислать комментарий     Решение


Задача 108855

Темы:   [ Задачи на максимум и минимум (прочее) ]
[ Правильная пирамида ]
Сложность: 4
Классы: 8,9

В правильной шестиугольной пирамиде SABCDEF найдите наибольший возможный угол между прямой SA и плоскостью SBC .
Прислать комментарий     Решение


Задача 109201

Темы:   [ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
[ Касательные к сферам ]
Сложность: 4
Классы: 10,11

В правильную четырёхугольную пирамиду SABCD ( S – вершина) вписана сфера. Сторона основания пирамиды равна 6, а высота пирамиды равна 4. Точка E выбрана на ребре SC , причём SE=SC , а точка F является ортогональной проекцией точки E на плоскость ABCD . Через точку E проведена касательная к сфере, пересекающая плоскость BSD в точке P , причём PEF = arccos . Найдите PE .
Прислать комментарий     Решение


Задача 109202

Темы:   [ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
[ Касательные к сферам ]
Сложность: 4
Классы: 10,11

В правильную четырёхугольную пирамиду SABCD ( S – вершина) вписана сфера. Сторона основания пирамиды равна 8, а высота пирамиды равна 3. Точка M – середина ребра SD , а точка K является ортогональной проекцией точки M на плоскость ABCD . Через точку M проведена касательная к сфере, пересекающая плоскость ASC в точке N , причём NMK = arccos (-) . Найдите NM .
Прислать комментарий     Решение


Задача 109260

Темы:   [ Ортоцентрический тетраэдр ]
[ Сфера, касающаяся ребер или сторон пирамиды ]
[ Достроение тетраэдра до параллелепипеда ]
Сложность: 4
Классы: 10,11

Все ребра треугольной пирамиды ABCD касаются некоторого шара. Три отрезка, соединяющие середины скрещивающихся рёбер AB и CD , AC и BD , AD и BC , равны между собой, ABC = 100o . Найдите отношение высот, опущенных из вершин A и B .
Прислать комментарий     Решение


Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 540]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .