ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Неравенство
Иенсена. Докажите, что если функция f (x) выпукла вверх на
отрезке [a;b], то для любых различных точек x1, x2,
..., xn (
n
f (
В вершинах куба расставлены числа: 7 нулей и одна единица. За один ход разрешается прибавить по единице к числам в концах любого ребра куба. Можно ли добиться того, чтобы все числа стали равными? А можно ли добиться того, чтобы все числа делились на 3?
На сторонах AB, BC, CD, DA параллелограмма ABCD взяты соответственно точки M, N, K, L, делящие эти стороны в одном и том же отношении (при обходе по часовой стрелке). Докажите, что при пересечении прямых AN, BK, CL и DM получится параллелограмм, причём его центр совпадает с центром параллелограмма ABCD. Найдите |
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 122]
Докажите, что если четырёхугольник вписан в окружность, то сумма произведений длин двух пар его противоположных сторон равна произведению длин его диагоналей.
Точки K, L, M делят стороны выпуклого четырёхугольника ABCD в отношении AK : KB = CL : LB = CM : MD = 1 : 2. Радиус описанной окружности треугольника KLM равен 5/2, KL = 4, LM = 3. Какова площадь четырёхугольника ABCD, если известно, что KM < KL?
Точки A, B, C делят стороны выпуклого четырёхугольника KLMN
в отношении AK : AL = BM : BL = CM : CN = 1 : 2. Площадь четырёхугольника KLMN
Трапеция AEFG (EF || AG) расположена в квадрате ABCD со стороной 14 так, что точки E, F и G лежат на сторонах AB, BC и CD соответственно. Диагонали AF и EG перпендикулярны, EG = 10
Трапеция AEFG (EF || AG) расположена в квадрате ABCD со стороной 3 так, что точки E, F и G лежат на сторонах AB, BC и CD соответственно. Диагонали AF и EG трапеции перпендикулярны, BF = 1. Найдите периметр трапеции.
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 122]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке