Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Докажите, что существуют числа, не менее чем 100 способами представимые в виде суммы 2001 слагаемого, каждое из которых является 2000-й степенью целого числа.

Вниз   Решение


Полина решила раскрасить свой клетчатый браслет размером 10×2 (рис. слева) волшебным узором из одинаковых фигурок (рис. справа), чередуя в них два цвета. Помогите ей это сделать.

ВверхВниз   Решение


Сторона основания правильной четырёхугольной пирамиды равна 8, а высота равна 3. Найдите площадь сечения пирамиды плоскостью, проходящей через одну из сторон основания и середину противоположного бокового ребра.

ВверхВниз   Решение


Пусть a, b и c — комплексные числа, лежащие на единичной окружности с центром в нуле. Докажите, что комплексное число $ {\frac{1}{2}}$(a + b + c - $ \bar{a}$bc) соответствует основанию высоты, опущенной из вершины a на сторону bc.

ВверхВниз   Решение


Пусть A – основание перпендикуляра, опущенного из центра данной окружности на данную прямую l. На этой прямой взяты еще две точки B и C так, что
AB = AC.  Через точки B и C проведены две произвольные секущие, из которых одна пересекает окружность в точках P и Q, вторая – в точках M и N. Пусть прямые PM и QN пересекают прямую l в точках R и S. Докажите, что  AR = AS.

ВверхВниз   Решение


Докажите, что число    (m, n ≥ 0)  целое.

Вверх   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 367]      



Задача 30665

Темы:   [ Уравнения в целых числах ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10

Решить в целых числах уравнение  1/a + 1/b + 1/c = 1.

Прислать комментарий     Решение

Задача 30666

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9

Решить в целых числах уравнение  x² – y² = 1988.

Прислать комментарий     Решение

Задача 30667

Тема:   [ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9

Докажите, что уравнение  1/x1/y = 1/n  имеет единственное решение в натуральных числах тогда и только тогда, когда n – простое число.

Прислать комментарий     Решение

Задача 30668

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 6,7

Решите уравнение в целых числах:  x³ + 3 = 4y(y + 1).

Прислать комментарий     Решение

Задача 31291

Темы:   [ Уравнения в целых числах ]
[ Четность и нечетность ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 6,7,8

Решить в целых числах уравнение  x² + y² + z² = 4(xy + yz + zx).

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 367]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .