Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Докажите, что в любом описанном около окружности многоугольнике найдутся три стороны, из которых можно составить треугольник.

Вниз   Решение


Прямой круговой конус с радиусом основания R и высотой     положили боком на плоскость и покатили так, что его вершина осталась неподвижна. Сколько оборотов сделает его основание до момента, когда конус вернется в исходное положение?

ВверхВниз   Решение


Уравнение с целыми коэффициентами  x4 + ax³ + bx² + cx + d = 0  имеет четыре положительных корня с учетом кратности.
Найдите наименьшее возможное значение коэффициента b при этих условиях.

ВверхВниз   Решение


На хорде AB окружности K с центром в точке O взята точка C. D — вторая точка пересечения окружности K с окружностью, описанной около $ \Delta$ACO. Доказать, что CD = CB.

ВверхВниз   Решение


Высота правильной четырёхугольной пирамиды равна 8, апофема пирамиды равна 10. Найдите площадь сечения пирамиды плоскостью, проведённой через середину высоты параллельно плоскости основания.

ВверхВниз   Решение


Окружность с центром на стороне AB равнобедренного треугольника ABC ( AB=BC ) касается отрезка AC в точке F , пересекает отрезок BC в точке G , проходит через точку B и пересекает отрезок AB в точке E , причём GC = a , BFG = γ . Найдите радиус окружности.

Вверх   Решение

Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 352]      



Задача 54165

 [Теорема о средней линии трапеции]
Темы:   [ Средняя линия трапеции ]
[ Вспомогательные равные треугольники ]
[ Средняя линия треугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

Докажите, что средняя линия трапеции параллельна основаниям и равна их полусумме.

Прислать комментарий     Решение

Задача 54170

Темы:   [ Средняя линия трапеции ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

Точки M и N – середины боковых сторон AB и CD трапеции ABCD. Могут ли прямые BN и DM быть параллельными?

Прислать комментарий     Решение

Задача 54788

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

Высота, биссектриса и медиана, выходящие из одной вершины треугольника, соответственно равны , 2 и .
Найдите радиус окружности, описанной около этого треугольника.

Прислать комментарий     Решение

Задача 54789

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC стороны CB и CA равны соответственно a и b. Биссектриса угла ACB пересекает сторону AB в точке K, а описанную окружность треугольника ABC – в точке M. Описанная окружность треугольника AMK вторично пересекает прямую CA в точке P. Найдите AP.

Прислать комментарий     Решение

Задача 54876

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные равные треугольники ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

Около треугольника ABC описана окружность. Продолжение биссектрисы CK треугольника ABC пересекает эту окружность в точке L, причём CL – диаметр данной окружности. Найдите отношение отрезков BL и AC, если  sin∠A = ¼.

Прислать комментарий     Решение

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 352]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .