ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Петя сложил 100 последовательных степеней двойки, начиная с некоторой, а Вася сложил некоторое количество последовательных натуральных чисел, начиная с 1. Могли ли они получить один и тот же результат?

Вниз   Решение


На плоскости даны три попарно пересекающиеся окружности, центры которых не лежат на одной прямой.
Докажите, что прямые, содержащие три общие хорды каждой пары этих окружностей пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 1023]      



Задача 35791

Темы:   [ Комбинаторика (прочее) ]
[ Процессы и операции ]
[ Задачи с неравенствами. Разбор случаев ]
[ Принцип крайнего ]
Сложность: 3-
Классы: 8,9

У Сережи и у Лены есть несколько шоколадок, каждая весом не более 100 граммов. Как бы они ни поделили эти шоколадки, у одного из них суммарный вес шоколадок не будет превосходить 100 граммов. Какой наибольший суммарный вес могут иметь все шоколадки?

Прислать комментарий     Решение

Задача 60380

Тема:   [ Классическая комбинаторика (прочее) ]
Сложность: 3-
Классы: 8,9

Из двух математиков и десяти экономистов надо составить комиссию из восьми человек.
Сколькими способами можно составить комиссию, если в неё должен входить хотя бы один математик?

Прислать комментарий     Решение

Задача 60383

Темы:   [ Сочетания и размещения ]
[ Системы точек и отрезков (прочее) ]
Сложность: 3-
Классы: 8,9

На двух параллельных прямых a и b выбраны точки A1, A2, ..., Am и B1, B2, ..., Bn соответственно и проведены все отрезки вида AiBj
(1 ≤ im,  1 ≤ jn).  Сколько будет точек пересечения, если известно, что никакие три из этих отрезков в одной точке не пересекаются?

Прислать комментарий     Решение

Задача 61421

Темы:   [ Раскладки и разбиения ]
[ Отношение порядка ]
Сложность: 3-
Классы: 8,9,10,11

Нарисуйте все лестницы из четырёх кирпичей в порядке убывания, начиная с самой крутой  (4, 0, 0, 0)  и заканчивая самой пологой  (1, 1, 1, 1).

Прислать комментарий     Решение

Задача 61422

Темы:   [ Раскладки и разбиения ]
[ Отношение порядка ]
Сложность: 3-
Классы: 8,9,10,11

а) Диаграммы Юнга  (4, 1, 1)  и  (3, 3, 0)  не сравнимы, – ни одна из них не мажорирует другую. Есть ли еще такие несравнимые наборы с суммой 6?

б) Найдите все несравнимые пары наборов для  s = 7.

Про диаграммы Юнга смотри здесь.

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 1023]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .