ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Существует ли а) ограниченная, б) неограниченная фигура на плоскости, имеющая среди своих осей симметрии две параллельные несовпадающие прямые? Произвольный четырехугольник разделен диагоналями на четыре треугольника; площади трех из них равны 10, 20 и 30, и каждая меньше площади четвертого треугольника. Найдите площадь данного четырехугольника.
Один из смежных углов с вершиной A вдвое больше другого.
В эти углы вписаны окружности с центрами O1 и O2 .
Найдите углы треугольника O1AO2 , если отношение радиусов
окружностей равно |
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 330]
Точки K и M расположены на сторонах AB и BC треугольника ABC, причём BK : KA = 1 : 4, BM : MC = 3 : 2. Прямые MK и AC пересекаются
в точке N.
С помощью циркуля и линейки проведите прямую, параллельную основаниям трапеции, так, чтобы отрезок этой прямой внутри трапеции делился бы диагоналями на три равные части.
В треугольнике ABC проведены медиана BK, биссектриса BE и
высота AD.
Докажите, что средняя линия трапеции параллельна основаниям и равна их полусумме.
Диагонали выпуклого четырёхугольника равны 12 и 18 и пересекаются в точке O.
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 330]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке