ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 26]      



Задача 87090

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Четырехугольная пирамида ]
Сложность: 3
Классы: 8,9

Ребро PA пирамиды PABC перпендикулярно плоскости основания ABC и равно 1. В треугольнике ABC угол при вершине A прямой, а каждый из катетов AB и AC равен 2. Точки M и N – середины AC и BC соответственно. Найдите радиус сферы, вписанной в пирамиду PMNC .
Прислать комментарий     Решение


Задача 87091

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Четырехугольная пирамида ]
Сложность: 3
Классы: 8,9

Высота PO правильной четырёхугольной пирамиды PABCD равна 4, а стороны основания ABCD равны 6. Точки M и N – середины отрезков BC и CD . Найдите радиус сферы, вписанной в пирамиду PMNC .
Прислать комментарий     Решение


Задача 109319

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Биссекторная плоскость и ГМТ ]
Сложность: 3
Классы: 10,11

Докажите, что в любую треугольную пирамиду можно вписать единственную сферу.
Прислать комментарий     Решение


Задача 64360

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Элементы пирамиды (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Проектирование помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Автор: Шмаров В.

Вписанная и вневписанная сферы треугольной пирамиды ABCD касаются её грани BCD в различных точках X и Y.
Докажите, что треугольник AXY тупоугольный.

Прислать комментарий     Решение

Задача 66319

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Касательные к сферам ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 10,11

Сфера, вписанная в пирамиду SABC, касается граней SAB, SBC, SCA в точках D, E, F соответственно.
Найдите все возможные значения суммы углов SDA, SEB и SFC.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 >> [Всего задач: 26]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .