ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 590]      



Задача 98085

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Тождественные преобразования ]
[ Разложение на множители ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 7,8,9

Автор: Фомин Д.

Докажите, что произведение 99 дробей     где  k = 2, 3, ..., 100,  больше ⅔.

Прислать комментарий     Решение

Задача 98126

Тема:   [ Линейные неравенства и системы неравенств ]
Сложность: 3
Классы: 8,9

Окружность разбита на семь дуг так, что сумма каждых двух соседних дуг не превышает 103°.
Назовите такое наибольшее число A, что при любом таком разбиении каждая из семи дуг содержит не меньше A°.

Прислать комментарий     Решение

Задача 98136

Тема:   [ Линейные неравенства и системы неравенств ]
Сложность: 3
Классы: 7,8,9

По окружности выписано 10 чисел, их сумма равна 100. Известно, что сумма каждой тройки чисел, стоящих подряд, не меньше 29.
Укажите такое наименьшее число A, что в любом таком наборе чисел каждое из чисел не превышает A.

Прислать комментарий     Решение

Задача 98339

Темы:   [ Линейные неравенства и системы неравенств ]
[ Взвешивания ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3
Классы: 7,8,9,10

Имеется 25 кусков сыра разного веса. Всегда ли можно один из этих кусков разрезать на две части и разложить сыр в два пакета так, что части разрезанного куска окажутся в разных пакетах, веса пакетов будут одинаковы и число кусков в пакетах также будет одинаково?

Прислать комментарий     Решение

Задача 98414

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 8,9

Рассматриваются такие наборы действительных чисел  {x1, x2, x3, ..., x20},  заключённых между 0 и 1, что  x1x2x3...x20 = (1 – x1)(1 – x2)(1 – x3)...(1 – x20).  Найдите среди этих наборов такой, для которого значение x1x2x3...x20 максимально.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .