Страница:
<< 179 180 181 182
183 184 185 >> [Всего задач: 1006]
|
|
Сложность: 5 Классы: 8,9,10,11
|
У Карабаса-Барабаса есть большой участок земли в форме выпуклого $12$-угольника, в вершинах которого стоят фонари.
Карабасу-Барабасу нужно поставить внутри участка некоторое конечное число фонарей, разделить его на треугольные участки с вершинами в фонарях и раздать эти участки актёрам театра. При этом каждый внутренний фонарь должен освещать не менее шести треугольных участков (фонарь светит недалеко, только на те участки, в вершине которых стоит). Какое максимальное количество треугольных участков может раздать Карабас-Барабас актёрам?
|
|
Сложность: 5 Классы: 8,9,10
|
Найдите суммы
а) 1·n + 2(n – 1) + 3(n – 2) + ... + n·1.
б) Sn,k = (1·2·...·k)·(n(n – 1)...(n – k + 1)) + (2·3·...·(k + 1))·((n – 1)(n – 2)...(n – k)) + ... + ((n – k + 1)(n – k + 2)...·n)·(k(k – 1)·...·1).
|
|
Сложность: 5 Классы: 9,10,11
|
m и n – натуральные числа, m < n. Докажите, что
|
|
Сложность: 5 Классы: 8,9,10,11
|
Числа 1, 2, 3, ..., 101 выписаны в ряд в каком-то порядке.
Докажите, что из них можно вычеркнуть 90 так, что оставшиеся 11 будут расположены по их величине (либо возрастая, либо убывая).
|
|
Сложность: 5 Классы: 9,10,11
|
В пространстве расположены 2n точек, никакие четыре из которых не лежат в одной плоскости. Проведены n² + 1 отрезков с концами в этих точках. Докажите, что проведённые отрезки образуют
а) хотя бы один треугольник;
б) не менее n треугольников.
Страница:
<< 179 180 181 182
183 184 185 >> [Всего задач: 1006]