Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 1352]      



Задача 103838

Тема:   [ Раскраски ]
Сложность: 3
Классы: 7,8,9

Квадрат 4×4 разделён на 16 клеток. Раскрасьте эти клетки в чёрный и белый цвета так, чтобы у каждой чёрной клетки было три белых соседа, а у каждой белой клетки был ровно один чёрный сосед. (Соседними считаются клетки, имеющие общую сторону.)

Прислать комментарий     Решение


Задача 104003

Темы:   [ Разные задачи на разрезания ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 7,8,9

Снежная Королева предпочитает идеальные фигуры, поэтому она так любит квадраты. Она дала Каю крест (см. рисунок справа), чтобы тот разделил его на равные части и собрал из них квадрат. Как это можно сделать?

Прислать комментарий     Решение

Задача 104004

Тема:   [ Разные задачи на разрезания ]
Сложность: 3
Классы: 7,8

У Кая имеется кусок шахматной доски 7×7 клеток из драгоценного хрусталя и алмазный нож. Кай хочет, не теряя материала и проводя разрезы только по краям клеток, распилить доску на 6 частей так, чтобы из них сделать три новых квадрата, все разных размеров. Как это сделать?
Прислать комментарий     Решение


Задача 105074

Темы:   [ Разные задачи на разрезания ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Трапеции (прочее) ]
Сложность: 3
Классы: 7,8,9

Длины оснований трапеции равны m см и n см (m и n – натуральные числа,  m ≠ n).  Докажите, что трапецию можно разрезать на равные треугольники.

Прислать комментарий     Решение

Задача 109018

Темы:   [ Покрытия ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 3
Классы: 7,8,9

Окружность покрыта несколькими дугами. Эти дуги могут налегать друг на друга, но ни одна из них не покрывает окружность целиком. Доказать, что всегда можно выбрать несколько из этих дуг так, чтобы они тоже покрывали всю окружность и составляли в сумме не более 720o .
Прислать комментарий     Решение


Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 1352]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .