Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 1341]
|
|
Сложность: 3 Классы: 10,11
|
В пространстве расположен выпуклый многогранник, все вершины которого
находятся в целых точках. Других целых точек внутри, на гранях и на рёбрах нет.
(Целой называется точка, все три координаты которой – целые числа.)
Доказать, что число вершин многогранника не превосходит восьми.
Доказать, что в прямоугольник размером
2
n×2
m (
n и
m — целые)
можно уложить в два слоя кости домино размером 1×2 так, чтобы каждый
слой полностью покрывал прямоугольник и чтобы никакие две кости из разных
слоёв не совпадали друг с другом.
|
|
Сложность: 3 Классы: 6,7,8
|
В узлах клетчатой плоскости отмечено пять точек. Доказать, что есть две из них, середина отрезка между которыми тоже попадает в узел.
Зачеркните все шестнадцать точек, изображённых на рисунке, шестью отрезками, не отрывая карандаша от бумаги и не проводя отрезков по линиям сетки.
|
|
Сложность: 3 Классы: 7,8,9
|
Круг радиуса 1 покрыт семью одинаковыми кругами. Докажите, что их радиус не меньше ½.
Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 1341]