Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 1352]
|
|
Сложность: 3 Классы: 10,11
|
Можно ли разрезать квадратный пирог на 9 равновеликих частей таким способом:
выбрать внутри квадрата две точки и соединить каждую из них прямолинейными
разрезами со всеми четырьмя вершинами квадрата? Если можно, то какие две точки
нужно выбрать?
Остров Толпыго имеет форму многоугольника. На нём расположено несколько
стран, каждая из которых имеет форму треугольника, причём каждые две
граничащие страны имеют целую общую сторону (т.е. вершина одного треугольника
не лежит на стороне другого). Доказать, что карту этого острова можно так
раскрасить тремя красками, чтобы каждая страна была закрашена одним цветом и любые две соседние страны были закрашениы в разные цвета.
Дан остроугольный треугольник ABC. Его покрывают тремя кругами, центры
которых лежат в вершинах, а радиусы равны высотам, проведённым из этих вершин.
Доказать, что каждая точка треугольника покрыта хотя бы одним из кругов.
На прямой расположено 100 точек. Отметим середины всевозможных отрезков с
концами в этих точках. Какое наименьшее число отмеченных точек может
получиться?
|
|
Сложность: 3 Классы: 10,11
|
В пространстве расположен выпуклый многогранник, все вершины которого
находятся в целых точках. Других целых точек внутри, на гранях и на рёбрах нет.
(Целой называется точка, все три координаты которой – целые числа.)
Доказать, что число вершин многогранника не превосходит восьми.
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 1352]