Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 831]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В выпуклом четырехугольнике $ABCD$ точки $K$, $L$, $M$, $N$ – середины сторон $BC$, $CD$, $DA$, $AB$ соответственно. Отрезки $AK$, $BL$, $CM$, $DN$, пересекаясь, делят друг друга на три части. Оказалось, что отношение длины средней части к длине всего отрезка одно и то же для всех четырех отрезков. Верно ли, что $ABCD$ – параллелограмм?
Внутри треугольника ABC взята произвольная точка O и построены точки A1, B1 и C1, симметричные точке O относительно середин сторон BC, CA и AB. Докажите, что треугольники ABC и A1B1C1 равны, а прямые AA1, BB1 и CC1 пересекаются в одной точке.
На сторонах AD и DC ромба ABCD построены правильные треугольники AKD и DMC, причём точка K лежит по ту же сторону от AD, что и прямая BC, а точка M – по другую сторону от DC, чем AB. Докажите, что точки B, K и M лежат на одной прямой.
Пусть AE и CD – биссектрисы треугольника ABC. Докажите, что если ∠BDE : ∠EDC = ∠BED : ∠DEA, то треугольник ABC — равнобедренный.
Площадь треугольника ABC равна 2
, сторона BC равна 1, ∠BCA = 60°. Точка D стороны AB удалена от точки B на 3, M – точка пересечения CD с медианой BE. Найдите отношение BM : ME.
Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 831]