Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 180]
На гипотенузе AB прямоугольного треугольника ABC выбрана такая точка D, что BD = BC, а на катете BC – такая точка E, что DE = BE.
Докажите, что AD + CE = DE.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
На гипотенузе $AB$ прямоугольного треугольника $ABC$ отметили точку $K$, а на катете $AC$ – точку $L$ так, что $AK = AC, BK = LC$. Отрезки $BL$ и $CK$ пересекаются в точке $M$. Докажите, что треугольник $CLM$ равнобедренный.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Точка $O$ – центр описанной окружности остроугольного треугольника $ABC$, $AH$ – его высота. Точка $P$ – основание перпендикуляра, опущенного из точки $A$ на прямую $CO$. Докажите, что прямая $HP$ проходит через середину стороны $AB$.
На сторонах AB и BC треугольника ABC выбраны точки K и L соответственно, причём ∠KCB = ∠
LAB = α. Из точки B опущены перпендикуляры BD и BE на прямые AL и CK соответственно. Точка F – середина стороны AC. Найдите углы треугольника DEF.
Точка M – середина хорды AB. Хорда CD пересекает AB в точке M. На отрезке CD как на диаметре построена полуокружность. Точка E лежит на этой полуокружности, и ME –
перпендикуляр к CD. Найдите угол AEB.
Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 180]