Страница:
<< 14 15 16 17 18
19 20 >> [Всего задач: 96]
|
|
Сложность: 6- Классы: 9,10,11
|
В клетках бесконечного листа клетчатой бумаги записаны действительные числа. Рассматриваются две
фигуры, каждая из которых состоит из конечного числа клеток. Фигуры разрешается перемещать
параллельно линиям сетки на целое число клеток.
Известно, что для любого положения первой фигуры сумма чисел,
записанных в накрываемых ею клетках, положительна. Докажите, что существует положение второй
фигуры, при котором сумма чисел в накрываемых ею клетках положительна.
|
|
Сложность: 6 Классы: 10,11
|
На плоскости дано конечное множество точек
X и
правильный треугольник
T . Известно, что любое подмножество
X'
множества
X , состоящее из не более
9
точек, можно покрыть
двумя параллельными переносами треугольника
T . Докажите, что
все множество
X можно покрыть двумя параллельными переносами
T .
|
|
Сложность: 3+ Классы: 8,9,10
|
На какое наибольшее число частей могут разбить плоскость n окружностей?
|
|
Сложность: 3+ Классы: 9,10,11
|
Докажите, что график многочлена
а) x³ + px; б) x³ + px + q; в) ax³ + bx² + cx + d
имеет центр симметрии.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В остроугольном треугольнике $ABC$ проведена высота $AH$. Точки $M$ и $N$ – середины отрезков $BH$ и $CH$. Докажите, что точка пересечения перпендикуляров, опущенных из точек $M$ и $N$ на прямые $AB$ и $AC$ соответственно, равноудалена от точек $B$ и $C$.
Страница:
<< 14 15 16 17 18
19 20 >> [Всего задач: 96]